首页> 外文OA文献 >Fast Implementation of KLT-Based Speech Enhancement Using Vector Quantization
【2h】

Fast Implementation of KLT-Based Speech Enhancement Using Vector Quantization

机译:使用矢量量化快速实现基于KLT的语音增强

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a new method for implementing Karhunen–Loeve transform (KLT)-based speech enhancement to exploit vector quantization (VQ). The method is suitable for real-time processing. The proposed method consists of a VQ learning stage and a filtering stage. In the VQ learning stage, the autocorrelation vectors comprising the first$K$elements of the autocorrelation function are extracted from learning data. The autocorrelation vectors are used as codewords in the VQ codebook. Next, the KLT bases that correspond to all the codeword vectors are estimated through eigendecomposition (ED) of the empirical Toeplitz covariance matrices constructed from the codeword vectors. In the filtering stage, the autocorrelation vectors that are estimated from the input signal are compared to the codewords. The nearest one is chosen in each frame. The precomputed KLT bases corresponding to the chosen codeword are used for filtering instead of performing ED, which is computationally intensive. Speech quality evaluation using objective measures shows that the proposed method is comparable to a conventional KLT-based method that performs ED in the filtering process. Results of subjective tests also support this result. In addition, processing time is reduced to about 1/66 that of the conventional method in the case where a frame length of 120 points is used. This complexity reduction is attained after the computational cost in the learning stage and a corresponding increase in the associated memory requirement. Nevertheless, these results demonstrate that the proposed method reduces computational complexity while maintaining the speech quality of the KLT-based speech enhancement.
机译:我们提出了一种新方法,用于实现基于Karhunen-Loeve变换(KLT)的语音增强,以利用矢量量化(VQ)。该方法适用于实时处理。所提出的方法包括一个VQ学习阶段和一个过滤阶段。在VQ学习阶段,从学习数据中提取包括自相关函数的前$ K $个元素的自相关向量。自相关向量在VQ码本中用作码字。接下来,通过从码字向量构造的经验托普利兹协方差矩阵的特征分解(ED)来估计与所有码字向量相对应的KLT基数。在滤波阶段,将从输入信号估计的自相关矢量与码字进行比较。在每一帧中选择最接近的一个。与选择的码字相对应的预先计算的KLT基数用于过滤而不是执行计算量大的ED。使用客观度量进行语音质量评估表明,该方法可与传统的基于KLT的方法相媲美,该方法在滤波过程中执行ED。主观测试的结果也支持该结果。另外,在使用120点的帧长的情况下,处理时间减少到传统方法的约1/66。在学习阶段的计算成本和相关存储需求的相应增加之后,实现了这种复杂性的降低。尽管如此,这些结果表明,所提出的方法在保持基于KLT的语音增强的语音质量的同时降低了计算复杂度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号